
INTRO TO TORIC VARIETIES

CONNOR SIMPSON

Warning: these notes were written for my own use and may contain
errors, omissions, or slight lies.

Notation for this talk is taken mainly from Fulton. Fulton’s Introduc-
tion to toric varieties and Cox, Little, and Schenk’s book are both good
references. For simplicity, we stick with the lattice Zd ⊂ Rd and use affine
examples where possible.

1. Motivation

Definition 1.1. A toric variety is a normal variety X that contains a
torus T = (C∗)d as an open dense subset, along with an action T×X → X
of T on X that extends the action of T on itself.

We like toric varieties because they are

• Built out of simple parts (tori)
• The parts fit together in simple ways

Hence, it is easy to compute many things about them!

A lot of our favorite varieties are easy to realize as toric varieties.

Example 1.2. (C∗)d ♦

Example 1.3. Ad. Here, (C∗)d is embedded in the usual way as the set
of elements with no zero coordintes and acts on Ad as multiplication by a
diagonal matrix. ♦

Example 1.4. Pd. We have

(C∗)d ↪→ Ad ↪→ Pd

(x1, . . . , xd) 7→ [1 : x1 : x2 : · · · : xd]

. The action extends that on Ad. For t = (t1, . . . , td) ∈ (C∗)d, and
x = [x0 : · · · : xd] ∈ Pd.

t · x = [x0 : t1x1 : t2x2 : · · · : tdxd]

♦

2. The kit of parts: affine toric varieties

Definition 2.1. A rational cone in Rd is {
∑
i aivi : ∀i, ai ≥ 0} with

{vi} a finite set of vectors with rational coordinates.

Call a cone strongly convex if it contains no subspace.

Example 2.2. The first orthant is generated by {e1, e2}.

♦

Example 2.3. The upper half-plane is a cone, but is not strongly convex.
♦

2.1. Cone to variety.

(i) Start with a cone σ
(ii) Let σ∨ = {u ∈ (Rd)∨ : ∀v ∈ σ, u(v) ≥ 0}.
(iii) Let M = Hom(Zn,Z) ⊂ (Rd)∨ and set Sσ := M ∩ σ∨.
(iv) Let Uσ = SpecC[Sσ]. You’ve built a toric variety!

It’s not obvious that this is toric.

Example 2.4 (Building A2). Take the first orthant from before. Then
σ∨ = cone(e∗1, e

∗
2), and

Sσ = M ∩ σ∨ = {(a, b) : a, b ∈ Z≥0}.
To see that Uσ := SpecC[Sσ] = A2 present by

C[x, y]→ C[Sσ]

x 7→ e∗1

y 7→ e∗2

♦
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2.2. Principal opens. Notice that a cone contains other cones: its faces.

Definition 2.5. A face of a cone σ is σ ∩ u⊥ for some u ∈ σ∨.

To the face τ = σ ∩ u⊥, associate the open subvariety

Uτ = {x ∈ X : u(x) 6= 0} = SpecC[Sσ][u−1] ⊂ X

Example 2.6. Consider the face τ = cone(e1) ⊂ cone(e1, e2). This is cut
out by e∗2 = 0. Using our presentation from before, it follows that

Uτ ∼= SpecC[x, y, y−1]

which is the affine on which y 6= 0. ♦

Example 2.7. Set τ = (0, 0). Then τ is cut out by e∗2 + e∗1, so

Uτ ∼= SpecC[x, y, (xy)−1] ∼= (C∗)2

We found the torus! ♦

In general, the point of the cone will give us the torus embedding.

2.3. Torus action.

• Points of SpecC[Sσ] are semigroup maps Sσ → C∗.
• The torus acts by (t · x)(u) = t(u)x(u).

Example 2.8. (a, b) ∈ A2 corresponds to x : Sσ → C∗ given by e∗1 7→ a and
e∗2 7→ b. If t = (t1, t2) is a torus element, then (t ·x)(e∗1) = t(e∗1)x(e∗1) = t1a
and likewise for the second coordinate. This is the natural action from
the start! ♦

3. Putting the pieces together

Definition 3.1. A fan is a set of cones ∆ such that for all σ, σ′ ∈ ∆,
σ ∩ σ′ ∈ ∆ and σ ∩ σ′ is a face of both σ and σ′.

Example 3.2. The following is a fan consisting of two 1-dimensional cones
and one zero-dimensional cone

♦

If τ is a face of two cones σ and σ′, then we can glue Uσ and Uσ′

together along Uτ .

Example 3.3. For the fan
σσ′

τ

we have:

C[Sσ] ∼= C[x]

C[Sσ′ ] ∼= C[y]

C[Sτ ] ∼= C[z, z−1]

and

C[Sσ]→ C[Sτ ]

x 7→ z

C[Sσ′ ]→ C[Sτ ]

y 7→ z−1

so this fan corresponds to P1. ♦

Proposition 3.4. X(∆×∆′) ∼= X(∆)×X(∆′).

Example 3.5. The following is the fan for P1 × P1.

♦

4. Some stuff you can read off from the fan

4.1. Smoothness.

Example 4.1. If σ = cone(e1, 2e1 + e2), then σ∨ = cone(e∗1, e
∗
1 + 2e∗2).

Hence, Uσ ∼= C[x, y, z]/
〈
xz − y2

〉
which is singular :( ♦

Difference between this and previous examples is that the cone gener-
ators were not a basis for Zd.
Proposition 4.2. Uσ is smooth if and only if σ is generated by a basis
for Zd.
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4.2. Euler characteristic.

Proposition 4.3. If X is a d-dimensional toric variety, then χ(X) is the
number of d-dimensional cones.

Example 4.4. The fan for P1 has two 1-dimensional cones, giving an Euler
characteristic of 2. ♦

Example 4.5. The fan for A2 has one 2-dimensional cone, which gives
Euler characteristic of 1. ♦

Example 4.6. The fan for C∗ is one point in R1, so we get Euler charac-
teristic 0. ♦

More generally, there are fairly simple formulas for all Betti numbers
in terms of the number of cones of each dimension.

4.3. Decomposition into orbits. The action of T on X partitions X
into disjoint orbits.

Proposition 4.7. The orbits are of the form T · xσ for σ ∈ ∆ where

xσ : u 7→

{
1, u ∈ σ⊥

0, else

Example 4.8. In A2, let σ = cone(e1, e2), τ1 = cone(e1), τ2 = cone(e2).
Then

xσ : u 7→ 0 (0, 0)

xτi : u 7→

{
1, u = e∗j , j 6= i

0, else
(1, 0), (0, 1)

x(0,0) : e∗i 7→ 1 (1, 1)

It is evident that the orbits of these points give all of A2. Note that fixed
points correspond to full dimensional cones. ♦

5. Blow-ups

5.1. Torus-invariant subvarieties. The closures of the torus orbits give
the irreducible torus-invariant subvarieties V (τ) for each cone τ ∈ ∆.
In particular, rays correspond to divisors. The orbit-closure V (τ) is the
complement of the opens defined by the facets of τ .

Example 5.1. In A2, the orbit-closures are: {(0, 0)}, Ce1, Ce2, and A2. ♦

5.2. Blow-ups. Blowing up along a torus-invariant subvariety gives a
toric map B → X(∆), where B is the blow-up. The algorithm to pro-
duce the fan of the blow-up of a smooth toric variety along V (σ) is

(i) Let ρ1, . . . , ρr be the rays of σ.
(ii) Let ρ0 :=

∑
i ρi.

(iii) Form a fan ∆′ from ∆ by replacing each τ ⊃ σ, with τ =
cone(ρ1, . . . , ρr, ρr+1, . . . , ρs}, with new cones

{cone(A) : A ⊂ {ρ1, . . . ρr+1}, A 6⊃ {ρ1, . . . , ρr}}
You can do more general blow-ups (of non-smooth things). Construction
is very similar, slightly more complicated.

Example 5.2. Blowing up A2 at the origin. The origin corresponds to the
single full-dimensional cone of A2. Set e0 = e1 + e2. The new fan is

♦

Fuzzily, you can maybe see that this is the blow-up because we added
a new ray (exceptional divisor) and the star of that ray is the fan of P1,
which is what we expect.

Concretely, the blowup B is V (xt0 − yt1) ⊂ A2 × P1. In the t0 6= 0
chart, this is

C
[
x, y,

t1
t0

]
/

〈
x
t1
t0
− y
〉
∼= C[x, x−1y]

and C[x, x−1y] is the semigroup algebra of σ∨, where σ = cone(e2, e1+e2).
The chart where t1 6= 0 is similarly isomorphic to the open of the other
maximal cone.
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Example 5.3. Last time, Dima told us that if you blow up P2 at two points
and P1 at 1 point, you get the same thing. This is very obvious from the
toric perspective: the fan below represents the common blow-up:

♦


