INTRO TO TORIC VARIETIES

CONNOR SIMPSON

Warning: these notes were written for my own use and may contain
errors, omissions, or slight lies.

Notation for this talk is taken mainly from Fulton. Fulton’s Introduc-
tion to toric varieties and Cox, Little, and Schenk’s book are both good
references. For simplicity, we stick with the lattice Z¢ ¢ R? and use affine
examples where possible.

1. MOTIVATION

Definition 1.1. A toric variety is a normal variety X that contains a
torus T = (C*)? as an open dense subset, along with an action Tx X — X
of T on X that extends the action of T on itself.

We like toric varieties because they are

e Built out of simple parts (tori)
e The parts fit together in simple ways

Hence, it is easy to compute many things about them!

A lot of our favorite varieties are easy to realize as toric varieties.
Ezample 1.2. (C*)4 ¢

Ezample 1.3. A%. Here, (C*)? is embedded in the usual way as the set
of elements with no zero coordintes and acts on A% as multiplication by a
diagonal matrix. &

Example 1.4. P*. We have
(C*)% — A? — P?
(CL’l, .

. The action extends that on AZ.
r=[xg:- a4 €PL

) [lixyixg - xy]

For t = (t1,...,tq) € (C*)¢, and

t.x:[zo:tlxl:t2x2:-~'ltd93d]

2. THE KIT OF PARTS: AFFINE TORIC VARIETIES

Definition 2.1. A rational cone in R? is {>", a;v; : Vi,a; > 0} with
{v;} a finite set of vectors with rational coordinates.

Call a cone strongly convex if it contains no subspace.

Ezample 2.2. The first orthant is generated by {ei,ea}.

N

¢
Ezample 2.3. The upper half-plane is a cone, but is not strongly convex.
¢
2.1. Cone to variety.
(i) Start with a cone &
(i) Let 0¥ = {u € (RY)Y : Vo € o, u(v) > 0}.
(iii) Let M = Hom(Z",Z) C (R%)" and set S, := M No".
(iv) Let U, = Spec C[S,]. You’ve built a toric variety!
It’s not obvious that this is toric.
Example 2.4 (Building A?). Take the first orthant from before. Then
v = cone(et, e}), and
Sy, =Mno ={(a,b):a,beZso}.
To see that U, := Spec C[S,] = A? present by
Clz,y] — C[S,]
T e}
Y €
¢
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2.2. Principal opens. Notice that a cone contains other cones: its faces.
Definition 2.5. A face of a cone ¢ is o Nu'’ for some u € gV.

To the face 7 = o Nut, associate the open subvariety
U, ={r € X :u(z) # 0} = SpecC[S,][u"t] C X

Ezample 2.6. Consider the face 7 = cone(e;) C cone(ey,ez). This is cut
out by e5 = 0. Using our presentation from before, it follows that
U, = SpecClz,y,y "]
which is the affine on which y # 0. &
Ezample 2.7. Set 7 = (0,0). Then 7 is cut out by e} + e}, so
U, = SpecClz, y, (zy) '] = (C*)?
We found the torus! &

In general, the point of the cone will give us the torus embedding.

2.3. Torus action.

e Points of Spec C[S,| are semigroup maps S, — C*.
e The torus acts by (¢ - z)(u) = t(u)x(u).

Ezample 2.8. (a,b) € A? corresponds to x : S, — C* given by e} — a and
es — b. If t = (t1,t2) is a torus element, then (t-x)(ef) = t(e])z(e}) = t1a
and likewise for the second coordinate. This is the natural action from
the start! &

3. PUTTING THE PIECES TOGETHER

Definition 3.1. A fan is a set of cones A such that for all 0,0’ € A,
ocNo’ € A and o No’ is a face of both ¢ and o”.

Ezample 3.2. The following is a fan consisting of two 1-dimensional cones
and one zero-dimensional cone

————>

o

If 7 is a face of two cones ¢ and o', then we can glue U, and U,
together along U .

Ezxample 3.3. For the fan

we have:

and

so this fan corresponds to P!. &

Proposition 3.4. X(A x A") = X(A) x X(A).
Example 3.5. The following is the fan for P! x P!,

4. SOME STUFF YOU CAN READ OFF FROM THE FAN

4.1. Smoothness.

Ezample 4.1. If 0 = cone(ey,2e; + e3), then oY = cone(e], e} + 2e3).
Hence, U, = C[z,y, 2]/ (xz — y*) which is singular :( O

Difference between this and previous examples is that the cone gener-
ators were not a basis for Z.

\

Proposition 4.2. U, is smooth if and only if o is generated by a basis
for 7.
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4.2. Euler characteristic.

Proposition 4.3. If X is a d-dimensional toric variety, then x(X) is the
number of d-dimensional cones.

Example 4.4. The fan for P! has two 1-dimensional cones, giving an Euler
characteristic of 2. &

Ezample 4.5. The fan for A? has one 2-dimensional cone, which gives
Euler characteristic of 1. &

Ezample 4.6. The fan for C* is one point in R!, so we get Euler charac-
teristic 0. &

More generally, there are fairly simple formulas for all Betti numbers
in terms of the number of cones of each dimension.

4.3. Decomposition into orbits. The action of T on X partitions X
into disjoint orbits.

Proposition 4.7. The orbits are of the form T - x, for o € A where

, u€ot
Ty U
0, else

Ezample 4.8. In A2, let o = cone(ey,ez), 71 = cone(e;), T2 = cone(es).
Then

To:ur— 0

xrv:u»—>{1’ u:e;,]ﬁéz’

(0,0)

1,0),(0,1
0, else (1,0),(0,1)

(1,1)

It is evident that the orbits of these points give all of A2, Note that fixed
points correspond to full dimensional cones. &

‘T(O,O) : 6: — 1

5. BLOw-UPS

5.1. Torus-invariant subvarieties. The closures of the torus orbits give
the irreducible torus-invariant subvarieties V(7) for each cone 7 € A.
In particular, rays correspond to divisors. The orbit-closure V(1) is the
complement of the opens defined by the facets of 7.

Ezample 5.1. In A%, the orbit-closures are: {(0,0)}, Cey, Cea, and A2, {

5.2. Blow-ups. Blowing up along a torus-invariant subvariety gives a
toric map B — X(A), where B is the blow-up. The algorithm to pro-
duce the fan of the blow-up of a smooth toric variety along V(o) is
(i) Let p1,...,pr be the rays of o.
(i) Let po := )", pi-
(iii) Form a fan A’ from A by replacing each 7 D o, with 7 =
cone(pi,. .-, Pry Pra1,---,Ps}, with new cones

{cone(A) : AC{p1,...pry1},AD{p1,-.-,pr}}

You can do more general blow-ups (of non-smooth things). Construction
is very similar, slightly more complicated.

Example 5.2. Blowing up A? at the origin. The origin corresponds to the
single full-dimensional cone of AZ. Set ey = e; + e3. The new fan is

b

Fuzzily, you can maybe see that this is the blow-up because we added
a new ray (exceptional divisor) and the star of that ray is the fan of P!,
which is what we expect.

Concretely, the blowup B is V(ztg — yt1) C A% x PL. In the to # 0
chart, this is

o

t t
¢ oy 2] /(e —y) = Clnay
to to
and C[x, 2~y is the semigroup algebra of 0V, where o = cone(es, e1 +e2).

The chart where t; # 0 is similarly isomorphic to the open of the other
maximal cone.
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Example 5.3. Last time, Dima told us that if you blow up P? at two points
and P! at 1 point, you get the same thing. This is very obvious from the
toric perspective: the fan below represents the common blow-up:



